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The supported range for a parameter has so far been defined in terms of
the cut-point —1.353 for the log likelihood ratio. Some have argued that
the scientific community should accept the use of the log likelihood ratio
to measure support as aziomatic, and that supported ranges should be re-
ported as 1.353 unit supported ranges, or 2 unit supported ranges, with the
choice of how many units of support left to the investigator. This notion
has not met with widespread acceptance because of the lack of any intu-
itive feeling for the log likelihood ratio scale — it seems hard to justify the
suggestion that a log likelihood ratio of —1 indicates that a value is sup-
ported while a log likelihood ratio of —2 indicates lack of support. Instead
it is more generally felt that the reported plausible range of parameter val-
ues should be associated in some way with a probability. In this chapter
we shall attempt to do this, and in the process we shall finally show why
—1.353 was chosen as the cut-point in terms of the log likelihood ratio.

There are two radically different approaches to associating a probability
with a range of parameter values, reflecting a deep philosophical division
amongst mathematicians and scientists about the nature of probability. We
shall start with the more orthodox view within biomedical science.

10.1 Coverage probability and confidence intervals

Our first argument is based on the frequentist interpretation of probability
in terms of relative frequency of different outcomes in a very large number
of repeated “experiments”. With this viewpoint the statement that there
is a probability of 0.9 that the parameter lies in a stated range does not
make sense; there can only be one correct value of the parameter and
it will either lie within the stated range or not, as the case my be. To
associate a probability with the supported range we must imagine a very
large number of repetitions of the study, and assume that the scientist
would calculate the supported range in exactly the same way each time.
Some of these ranges will include the true parameter value and some will
not. The relative frequency with which the ranges include the true value
is called the coverage probability for the range, although strictly speaking



ol

90 LIKELIHOOD, PROBABILITY, AND CONFIDENCE

it is the coverage probability for the method of choosing the range.

‘We shall start with Gaussian probability model and consider the es-
timation of the mean p, from a single observation z, when the standard
deviation, o, is known. The log likelihood ratio for u is

_L(z=n\
2 o
We saw in Chapter 8 that the range of values for u with log likelihood
ratios above the cut-point of —1.353 is

z % 1.6450.

We shall now show that the coverage probability of this range is 0.90 by
imagining an endless series of repetitions of the study with the value of 1
remaining unchanged at the true value. Each study will yield a different
observation, X, and hence a different range (see Fig. 10.1). The range for
any particular repetition will contain the true value of & provided the true
value is judged to be supported by the data X — in other words, provided
that '

2
L (-)-(;—‘i> > —1.353,
2 o

where u now refers to the true value. Writing

(%)
z =
o
this condition is equivalent to (2)? being less than 2.706, and since (2)2

has a chi-squared distribution this occurs with probability 0.90. Hence the
coverage probability is 0.90.

Exercise 10.1. In a computer simulation of repetitions of a study in which
a single observation is made from a Gaussian distribution with 4 = 100 and
¢ = 10, the first four repetitions produced the observations 104, 115, 82, and 92.
Calculate the log likelihood ratio for ¢ = 100 for each of these four observations.
In which repetitions would the true value of x4 have been supported?

The idea of coverage probability has allowed us to attach a frequentist
probability, such as 0.90, to a range of parameter values, but we cannot
say that the probability of the true value lying within the stated range
is 0.90, because the stated range either does or does not include the ttue
value. To avoid having to say precisely what is meant every time the
probability for a range is reported, statisticians took refuge in an alternative
word and professed themselves 90% confident that the true value lies in the
reported interval. Not surprisingly the distinction between probability and
confidence is rarely appreciated by scientists.
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Fig. 10.1. Repeated studies and their supported ranges.

Exercise 10.2. Use tables of the chi-squared distribution to work out the cut-
point for-the log likelihood ratio which leads to a 95% coverage probability for
the corresponding supported range, and give the formula for this range.

We have demonstrated the correspondence between the —1.353 cut-
point for the log likelihood ratio and 90% coverage, but only for the case
of the Gaussien log likelihood where the standard deviation is known. For-
tunately the relationship also holds approximately for other log likelihoods
such as the Bernoulli and Poisson. With increasing amounts of data these
log likelihoods approach the quadratic shape of the Gaussian log likeli-
hood 4nd the coverage probability for the supported range based on the
—1.353 cut-point is approximately 90%. In other words, if M is the most
likely value of a parameter and S is the standard deviation of the Gaussian
approximation to the likelihood, then the supported range

M +1.6458

is also, at least approximately, a 90% confidence interval.

+ This raises the question of how much data is needed to use this approx-
imate theory. For the Bernoulli likelihood, a reasonable guide is that the
approximations are good if both D and N — D are larger than 10, but can
be misleading if either count is less than 5. In the Poisson case the observed
pumber of events, D, should be largéx_than 10; there is no restriction on
the number of person-years since this is“relevant to the shape of the log
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likelihood curve. In Chapter 12 we discuss what to do when there are too
few data to use the approximate theory.

The only likelihood for which the relationship between the supported
range and the 90% confidence interval holds ezactly is Gaussian likelihood,
and even here we have made the assumption that the parameter ¢ is known.
In the early years of this century it was shown that the practice of estimat-
ing the standard deviation using the data and thereafter pretending that
this estimate is the true value, leads to intervals with approzimately the
correct coverage probability, providing N is large enough (more than 15).

The intervals we have chosen to present correspond to 90% confidence
intervals but 95% intervals are more usually reported in the scientific litera-
ture. The routine use of 90% intervals in the epidemiological literature has
recently been proposed on'the grounds that they give a better impression
of the range of plausible values. If you prefer 95% intervals these can be
obtained by replacing 1.645 by 1.960 in the calculations.

10.2 Subjective probability

The second approach to the problem of assigning a probability to a range of
values for a parameter is based on the philosophical position that probabil-
ity is a subjective measure of ignorance. The investigator uses probability
as a measure of subjective degree of belief in the different values which the
parameter might take. With this view it is perfectly logical to say that
there is a probability of 0.9 that the parameter lies within a stated range.

Before observing the data, the investigator will have certain beliefs
about the parameter value and these can be measured by a priori prob-
abilities. Because they are subjective every scientist would be permitted
to give different probabilities to different parameter values. However, the
idea of scientific objectivity is not completely rejected. In this approach
objectivity lies in the rule used to modify the a priori probabilities in the
light of the data from the study. This is Bayes’ rule and statisticians who
take this philosophical position call themselves Bayesians.

Bayes’ rule was described in Chapter 2, where it was used to calcu-
late the probabilities of exposure given outcome from the probabilities of
outcome given exposure. Once we are prepared to assign probabilities to
parameter values, Bayes’ rule can be used to calculate the probability of
each value of a parameter (0) given the data, from the probability of the
data given the value of the parameter.

_The argument is illustrated by two tree diagrams. Fig. 10.2 illustrates
the direction in which probabilities are specified in the statistical model
— given the choice of the value of the parameter, #, the model tells us
the probability of the data. The probability of any particular combination
of data and parameter value is then the product of the probability of the
parameter value and the probability of data given the parameter value. In

SUBJECTIVE PROBABILITY 93

Parameter
value - Data

©)

Pr(9) Pr(Datal6)

Fig. 10.2. From parameter value to data.

Parameter
Data value
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Pr(Data) Pr(g|Data)
Fig. 10.3. From data to parameter value.

this product, the first term, Pr(6), represents the a priori degree of belief for
the value of 6 and the second term, Pr(Data|6), is the likelihood. Fig. 10.3
reverses the conditioning argument, and expresses the joint probability
as the product of the overall probability of the data multiplied by the
probability of the parameter given the data. This latter term, Pr(#{Data),
represents the posterior degree of belief in the parameter value once the
data have been observed. Since the joint probability of data and parameter
value is the same no matter which way we argue,

Pr(6) x Pr(Data|@) = Pr(Data) x Pr(f|Data),
so that Pr(6) x Pr(Datal9)
Pr(Data) )

Thus elementary probability theory tells us how prior beliefs about the
value of a parameter should be modified after the observation of data.

We shall now apply this idea to the problem of estimating the Gaussian
mean, u, given a single observation x. The likelihood for p is

w[3(22)]

Pr(f|Data) =
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If prior to observing x we believe that no value of 4 is any more probable
than any other, then the prior probability density does not vary with p and
the posterior probability density is proportional to the likelihood. Writing

the likelihood as
1/ p—z 2
exp [—5 ( po ) J .

we see that after choosing the constant of proportionality to make the
total probability for x equal to 1, the posterior distribution for uis a
saussian distribution which has mean z and standard deviation . The 5
and 95 percentiles of the standard Gaussian distribution are —1.645 and
1.645 respectively so there is a 90% probability that u lies in the range
x £ 1.6450. This range is called a 90% credible interval.

When the quadratic approximation

1/ M-6\°
2 <T>
is used for likelihoods such as the Bernoulli and Poisson, a similar argu-
ment shows that, provided the prior probability density for 6 does not vary
vp/t,l;\@/, then the posterior distributiofi ToF &~ is “approximately Gaussian
with mean M and standard deviation S. It follows that there is a 90%
probability that 6 lies in the range M =+ 1.645S.

It appears from this discussion that the frequentists and the Bayesians
end up making very similar statements, differing only in their use of the
words confidence and probability. But to achieve this agreement we have
had to make the rathe tion that @ priori no one value
of the parameter is moré probable than any other. This is taking open

indedness too far and Bayesians would generally advocate the use of more
fealistic priors. When there is a large amount of data the posterior is more
influenced by the likelihood than by the prior, and both approaches lead to
similar answers regardless of the choice of prior. However, when the data,
are sparse, there can be serious differences between the two approaches.
Weshall return to this in Chapter 12.

Solutions to the exercises

10.1 When z = 104, the log likelihood ratio for p = 100 is

1 /104 — 100\ 2
-3 (T) = —0.08.

‘For z = 115, 82,92 the log likelihood ratio turns out to be —1.125, —1.62,

and —0.32 respectively. Thus only for = 82 is the support for the true
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value of x less than the cut-off value of —1.353. In all other repetitions
1 = 100 is supported.

10.2 From tables of chi-squared, the value 3.841 is exceeded with proba-

bility 0.05, so 5
(I — K ) > 3.841
g

with probability 0.05. The log likelihood ratio, which is minus one half of
this quantity, is therefore less than

—0.5 x 3.841 = —1.921

with probability 0.05. Thus the cut-point for the log likelihood ratio is
—1.921.
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